Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber

Authors: Carlos Amaris; Mahmoud Bourouis; Manel Vallès;

Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber

Abstract

Abstract The present study aims to quantify experimentally the individual and simultaneous effects of CNTs (carbon nanotubes) and advanced surfaces on the performance of an NH 3 /LiNO 3 tubular bubble absorber. Operating conditions are those of interest for use in air-cooled absorption chillers driven by low temperature heat sources. Firstly, experimental tests were performed with the tubular absorber fitted with an inner smooth surface to analyze the effect of adding carbon nanotubes (0.01 wt%) to the base mixture NH 3 /LiNO 3 . Then, the tubular absorber was tested using an inner advanced surface tube both with and without adding carbon nanotubes to the base mixture NH 3 /LiNO 3 . The advanced surface tube is made of aluminum and has internal helical micro-fins measuring 0.3 mm in length. Results show that the maximum absorption mass flux achieved with the CNT binary nanofluid and the smooth tube is up to 1.64 and 1.48 times higher than reference values at cooling-water temperatures of 40 and 35 °C, respectively. It is also found that simultaneous use of CNT nanoparticles and advanced surfaces resulted in a more pronounced increase in the absorption mass flux and solution heat transfer coefficient with respect to the smooth tube absorber with NH 3 /LiNO 3 as a working pair.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%