Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Studying the repetitive extinction-ignition dynamics for lean premixed hydrogen-air combustion in a heated microchannel

Authors: orcid Kiumars Mazaheri;
Kiumars Mazaheri
ORCID
Harvested from ORCID Public Data File

Kiumars Mazaheri in OpenAIRE
orcid Alireza Alipoor;
Alireza Alipoor
ORCID
Harvested from ORCID Public Data File

Alireza Alipoor in OpenAIRE

Studying the repetitive extinction-ignition dynamics for lean premixed hydrogen-air combustion in a heated microchannel

Abstract

Abstract The mechanism of repetitive extinction-ignition dynamics for lean premixed hydrogen–air mixture is studied in a microchannel with prescribed wall temperature. In this dynamics, the reacting flow is affected by the wall temperature and leads to ignition near walls. The flame expands in both downstream and upstream directions until flame bifurcation occurs. Part of the flame which propagates towards inflow consumes all the unburned mixture along its way. As the flame reaches cold inflow mixture, it extinguishes due to the heat loss. Another part of flame consumes the unburned mixture in downstream until the flame is extinguished. Afterward, unburned mixture fills the tube again until it is reignited. The repetitive extinction-ignition dynamics can be classified in five phases, namely, initiation phase, ignition phase, propagation phase, weak reaction phase, and flowing phase. Three peaks were detected for hydrogen–air mixture combustion which all appears in propagation and weak reaction phases. In the remaining phases two peaks were present. Details of flow field indicate that bifurcation of flame is due to creation of recirculation zones formed close to the walls at the beginning of ignition phase. The recirculation zones grow and merge, until a boundary zone is created in flow field with zero velocity.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%