Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Joint cost of energy under an optimal economic policy of hybrid power systems subject to uncertainty

Authors: Guzmán Díaz; Jon Andreu; Estefanía Planas; Inigo Kortabarria;

Joint cost of energy under an optimal economic policy of hybrid power systems subject to uncertainty

Abstract

Economical optimization of hybrid systems is usually performed by means of LCoE (levelized cost of energy) calculation. Previous works deal with the LCoE calculation of the whole hybrid system disregarding an important issue: the stochastic component of the system units must be jointly considered. This paper deals with this issue and proposes a new fast optimal policy that properly calculates the LCoE of a hybrid system and finds the lowest LCoE. This proposed policy also considers the implied competition among power sources when variability of gas and electricity prices are taken into account. Additionally, it presents a comparative between the LCoE of the hybrid system and its individual technologies of generation by means of a fast and robust algorithm based on vector logical computation. Numerical case analyses based on realistic data are presented that valuate the contribution of technologies in a hybrid power system to the joint LCoE This work has been carried out inside the Research and Education Unit UFI11/16 of the UPV/EHU and supported by the Department of Education, Universities and Research of the Basque Government within the fund for research groups of the Basque university system through: IT394-10, IE14-389 and DPI2014-53685-C2-2-R.

Keywords

LCoE, hybrid systems, optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average