

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biomass devolatilization at high temperature under N2 and CO2: Char morphology and reactivity

handle: 10261/134171
Oxy-fuel combustion is usually performed in pf reactors under an enriched O2 atmosphere of CO2 to obtain a high CO2 content in the flue gases. The effect of the differences in thermal properties of N2 (conventional air combustion) and CO2 (oxy-fuel combustion) on the devolatilization process needs to be evaluated. The morphology and reactivity of biomass chars obtained by devolatilization in an EFR (entrained flow reactor) at 1300 °C under N2 and CO2, simulating air and oxy-fuel combustion atmospheres, were studied. Four biomasses were selected: PIN (pine sawdust), OW (olive waste), OS (olive stones) and CW (coffee waste). The apparent volatile yield under CO2 was greater than under N2. The morphology of the chars was assessed using SEM (scanning electron microscopy). The higher mass loss and the lower char particle size obtained during CO2 devolatilization indicate that a char-CO2 reaction occurred. The reactivity indices indicate a lower reactivity of the CO2-chars than the N2-chars. The devolatilization atmosphere had a significant effect on the biomass chars, suggesting that gasification had occurred during CO2 devolatilization. The OW, OS and CW chars showed a very high reactivity up to intermediate conversion levels, probably due to the catalytic effect of inherent alkali metals. This work was carried out with financial support from the Principado de Asturias (PCTI 2013-2017, GRUPIN14-079), co-financed by the European Regional Development Fund (ERDF). Financial support from the CSIC (Project PIE 201380E064) is also gratefully acknowledged Peer reviewed
Entrained flow reactor, Reactivity, Char, Oxy-fuel combustion, Biomass
Entrained flow reactor, Reactivity, Char, Oxy-fuel combustion, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).115 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 51 download downloads 212 - 51views212downloads
Data source Views Downloads DIGITAL.CSIC 51 212


