Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prediction of lithium-ion battery capacity with metabolic grey model

Authors: Lin Chen; Binbin Tian; Haihong Pan; Lin Weilong; Junzi Li;

Prediction of lithium-ion battery capacity with metabolic grey model

Abstract

Abstract Given the popularity of Lithium-ion batteries in EVs (electric vehicles), predicting the capacity quickly and accurately throughout a battery's full life-time is still a challenging issue for ensuring the reliability of EVs. This paper proposes an approach in predicting the varied capacity with discharge cycles based on metabolic grey theory and consider issues from two perspectives: 1) three metabolic grey models will be presented, including MGM (metabolic grey model), MREGM (metabolic Residual-error grey model), and MMREGM (metabolic Markov-residual-error grey model); 2) the universality of these models will be explored under different conditions (such as various discharge rates and temperatures). Furthermore, the research findings in this paper demonstrate the excellent performance of the prediction depending on the three models; however, the precision of the MREGM model is inferior compared to the others. Therefore, we have obtained the conclusion in which the MGM model and the MMREGM model have excellent performances in predicting the capacity under a variety of load conditions, even using few data points for modeling. Also, the universality of the metabolic grey prediction theory is verified by predicting the capacity of batteries under different discharge rates and different temperatures.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%