Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sizing of a standalone photovoltaic water pumping system using a multi-objective evolutionary algorithm

Authors: Dhiaa Halboot Muhsen; Abu Bakar Ghazali; Tamer Khatib; Issa Ahmed Abed; Emad M. Natsheh;

Sizing of a standalone photovoltaic water pumping system using a multi-objective evolutionary algorithm

Abstract

Abstract In this paper, a differential evolution based multi-objective optimization algorithm is proposed to optimally size a photovoltaic water pumping system (PVPS). Non-dominated sorting and crowding distance concepts are used to increase the elitism and diversity of the proposed algorithm. The proposed objective function is composed of technical and economic objectives. Loss of load probability is used as a technical objective, whereas life cycle cost is considered as an economic objective. The proposed PVPS is designed to provide a daily water demand of 30 m 3 with a 20 m static head and a drawdown level. The optimal configuration of the system is selected from an optimal Pareto set of configurations to achieve balance between reliability, cost, and excess water of the system. The performance of the system is tested using hourly metorological data for one year time. Results show that the loss of load probability of the proposed system is around 0.5%. The life cycle cost, water deficit, and cost of water unit of the system are 9910 USD, 55 m 3 , and 0.045 USD/m 3 , respectively.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%