
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An explanation of the Al2O3 nanofluid thermal conductivity based on the phonon theory of liquid

handle: 20.500.14243/403985 , 11587/405935
In the present work a systematic investigation on several mechanisms affecting the thermal conductivity of Alumina based nanofluid, such as layering, Brownian motion, clustering, ballistic phonon motion, thermal boundary resistance and mass difference scattering, is presented. The effect of mass difference scattering is for the first time suggested and studied in the present work. Both theoretical and experimental approaches have been carried out in order to analyze the competition of these phenomena and to identify the most relevant. This was obtained by comparing micrometric and nanometric particles suspended in liquid water (293 K), frozen water (253 K) and diathermic oil (293 K). Each of the above mentioned conditions was selected to make dominant only one of the mechanisms that affect nanofluid thermal conductivity. The main results of this investigation concern the mass difference scattering, which has been found to be the most intensive mechanism reducing the nanofluid thermal conductivity with respect to the microfluid one. (C) 2016 Elsevier Ltd. All rights reserved.
Alumina; Heat transfer; Microfluid; Nanofluid; Phonon scattering; Thermal conductivity, Alumina, Phonon scattering, Nanofluid, Thermal conductivity, Microfluid, Heat transfer
Alumina; Heat transfer; Microfluid; Nanofluid; Phonon scattering; Thermal conductivity, Alumina, Phonon scattering, Nanofluid, Thermal conductivity, Microfluid, Heat transfer
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).111 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
