
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Experimental investigation of low-level water in waste-oil produced biodiesel-diesel fuel blend

Experimental investigation of low-level water in waste-oil produced biodiesel-diesel fuel blend
Diminishing fuel resources and stringent emission mandates have demanded cleaner combustion and increased fuel efficiency. Three water addition rates, i.e., 2, 4, and 6 wt% in biodiesel-diesel blend (B5) was investigated herein. Combustion characteristics of the emulsified fuel blends were compared in a naturally-aspirated diesel engine at full load and different engine speeds. More specifically, biodiesel was produced from waste cooking oil (WCO) and to further increase waste utilization, recycled biodiesel wastewater was used as additive in B5. The result obtained showed that low-level water addition (i.e., 2 and 4 wt%) in B5 led to different results from those obtained using higher water addition rates (i.e., >5 wt%) reported by the previous studies. In more details, the findings of the present study revealed that low level water addition in B5 could considerably reduce CO, HC, CO2, and NOx emissions. Among water-containing B5 fuel emulsions, the optimal water addition level in terms of engine performance parameters and emissions was found at 4 wt%. In particular, the emitted CO2, HC, and NOx were decreased by over 8.5%, 28%, and 24%, respectively, at maximum speed of 2500 rpm.
- Biofuel Research Team Iran (Islamic Republic of)
- Malek Ashtar University of Technology Iran (Islamic Republic of)
- Agricultural Biotechnology Research Institute of Iran Iran (Islamic Republic of)
- Biofuel Research Team Iran (Islamic Republic of)
- Amirkabir University of Technology Iran (Islamic Republic of)
660
660
1 Research products, page 1 of 1
- 2007IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).62 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
