Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance analysis on a high-temperature solar evacuated receiver with an inner radiation shield

Authors: Wang, Qiliang; Li, Jing; Yang, Honglun; Su, Katy; Hu, Mingke; Pei, Gang;

Performance analysis on a high-temperature solar evacuated receiver with an inner radiation shield

Abstract

Abstract A novel solar evacuated receiver as the key part of parabolic trough collector (PTC) was designed and constructed by authors. The novel evacuated receiver (NER) with an inner radiation shield can significantly decrease heat loss at higher operating temperatures when compared with the traditional evacuated receiver (TER). A thermodynamic model relying on the spectrum parameter model of radiation heat transfer was developed to predict the performances of evacuated receivers. Also, experiments using the novel evacuated receiver and traditional evacuated receiver were conducted in the laboratory under different parametric conditions to validate results obtained for the simulation. A comparison between simulation results and experimental data demonstrated that the model was able to yield satisfactory consistencies and predictions to a reasonable accuracy (with the root mean square deviations less than 6%). Results indicated that the novel evacuated receiver has a role in decreasing the total heat loss of receiver compared with the traditional receiver when the working temperature is higher than 296 °C, the heat loss reduction percentage of the novel evacuated receiver reaches 19.1% when the operating temperature is 480 °C, and the value of this percentage would be greater at higher working temperatures.

Country
United Kingdom
Related Organizations
Keywords

Energy, Heat loss, 600, 530, Radiation shield, Environment and Sustainability, Parabolic trough collector, Evacuated receiver

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%