Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immobilized mixed-culture reactor (IMcR) for hydrogen and methane production from glucose

Authors: Mahendra Rao Somalu; Ibdal Satar; Wan Ramli Wan Daud; Byung Hong Kim; Byung Hong Kim; Mostafa Ghasemi;

Immobilized mixed-culture reactor (IMcR) for hydrogen and methane production from glucose

Abstract

Abstract Immobilized cell technology is a new technique to produce biogas. In the present study, an immobilized mixed-culture reactor (IMcR) in batch-mode operation was used for the production of hydrogen and methane simultaneously from glucose. Several factors, such as glucose concentration, temperature and fermentation time, were evaluated to determine the optimal conditions for hydrogen and methane production. Gas chromatography with a thermal conductivity detector (GC-TCD) and high-performance liquid chromatography (HPLC) were used to analyse the gas and effluent. The morphologies of the immobilized cells were characterized using scanning electron microscopy (SEM). The optimal conditions for hydrogen and methane production were obtained using a substrate with 5.0 g/L glucose at 60 °C for fermentation times of 48.0 h (hydrogen) and 72.0 h (methane). The maximum yields of hydrogen and methane at these optimal conditions were 37.0 ± 0.0 (×10 −3 ) mol/mol glu and 39.0 ± 0.0 (×10 −3 ) mol/mol glu, respectively. The chemical oxygen demand ( COD ) and pH gradually decreased with increasing fermentation time and temperature. However, the performance of the IMcR decreased over time due to cell damage and microorganism detachment from the cell. In conclusion, the IMcR system is a potential system for the simultaneous production of hydrogen and methane.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%