
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Immobilized mixed-culture reactor (IMcR) for hydrogen and methane production from glucose

Abstract Immobilized cell technology is a new technique to produce biogas. In the present study, an immobilized mixed-culture reactor (IMcR) in batch-mode operation was used for the production of hydrogen and methane simultaneously from glucose. Several factors, such as glucose concentration, temperature and fermentation time, were evaluated to determine the optimal conditions for hydrogen and methane production. Gas chromatography with a thermal conductivity detector (GC-TCD) and high-performance liquid chromatography (HPLC) were used to analyse the gas and effluent. The morphologies of the immobilized cells were characterized using scanning electron microscopy (SEM). The optimal conditions for hydrogen and methane production were obtained using a substrate with 5.0 g/L glucose at 60 °C for fermentation times of 48.0 h (hydrogen) and 72.0 h (methane). The maximum yields of hydrogen and methane at these optimal conditions were 37.0 ± 0.0 (×10 −3 ) mol/mol glu and 39.0 ± 0.0 (×10 −3 ) mol/mol glu, respectively. The chemical oxygen demand ( COD ) and pH gradually decreased with increasing fermentation time and temperature. However, the performance of the IMcR decreased over time due to cell damage and microorganism detachment from the cell. In conclusion, the IMcR system is a potential system for the simultaneous production of hydrogen and methane.
- Universiti Teknologi MARA Malaysia
- National University of Malaysia Malaysia
- Fuel Cell Institute Malaysia
- Harbin Institute of Technology China (People's Republic of)
- Universiti Teknologi Petronas Malaysia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
