
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
How to approach Carnot cycle via zeotropic working fluid: Research methodology and case study

Abstract A great amount of researches on thermodynamic cycles have been active in recent years, such as ORC (organic Rankine cycle), Kalina cycle, et al. However, the ultimate aim of such researches, which could even be traced back to more than one century ago, has not changed with a tireless pursuing to Carnot cycle. In exiting researches, the working fluid, as a medium for energy conversion, is commonly considered to play an important role in the thermodynamic cycle: (1) relative to ideal cycle, most of actual power cycles in the engineering field cannot operate without working fluid; (2) energy efficiency, considering the analysis of second-law efficiency, of actual cycle has a significant decrease due to the introduction of working fluid. Thus, working fluid is a hot spot in the research of thermodynamic cycle in recent years. Zeotropic mixture, which commonly consists of two or more pure working fluids, has flexibility in thermos-physical properties with a possible potential to enhance the cycle performance. The effects of thermos-physical properties of zeotropic mixture should be considered when determining the cycle structure and the design of components. This paper presents a novel construction method of thermodynamic cycle based on the zeotropic mixture. By adding the thermodynamic coordinate of working fluid, a 3D cycle diagram based on the traditional temperature and entropy cycle diagram is applied for performance analysis of cycle. According the proposed construction method, a baseline cycle, composed by ORC sub-system and compositions regulating sub-system, is put forward and available compositions regulating techniques for such cycle are discussed as well. Finally, a representative case is described briefly and the features are summarized. This work provides a new methodology view to guide researchers in energy-efficient design of thermodynamic cycles.
- University of Stavanger Norway
- University of Stavanger Norway
- Tianjin University China (People's Republic of)
- Tianjin University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).53 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
