
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells

handle: 10012/13067
Abstract Catalyst layer (CL) has a significant impact on the overall pore structure of the entire electrodes, thereby impacting the transport processes and the performance of polymer electrolyte membrane (PEM) fuel cells. In this study, the contribution of the CL to the entire electrode structure is experimentally investigated. The electrodes are prepared by using two types of catalysts with different platinum/carbon (Pt/C) ratios and Pt loadings and characterized by the method of standard porosimetry (MSP). The results show that for the same type of catalysts, as the Pt loading is increased, both the porosity and mean pore size of the electrode decrease, whereas the pore surface area increases. For a constant Pt loading, a lower Pt/C ratio results in a thicker electrode with a smaller porosity, smaller pore size, and larger pore surface area. The fractal dimension is found to be a good representative of the complexity of the pore structure of the electrode; a larger fractal dimension is detected for a higher Pt loading and a smaller Pt/C ratio.
- University of Waterloo Canada
Catalyst layer, Pore surface area, 620, Pore size, Fractal dimension, Polymer electrolyte membrane fuel cell
Catalyst layer, Pore surface area, 620, Pore size, Fractal dimension, Polymer electrolyte membrane fuel cell
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).62 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
