Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Energy
Article . 2018
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of operation of a micro-cogenerator with two solid oxide fuel cells stacks for maintaining neutral water balance

Authors: Jakub Kupecki; Konrad Motylinski;

Analysis of operation of a micro-cogenerator with two solid oxide fuel cells stacks for maintaining neutral water balance

Abstract

Stacjonarne układy energetyczne z ogniwami paliwowymi są bardzo korzystnym rozwiązaniem pod kątem wysoce wydajnej produkcji energii elektrycznej i ciepła. Spośród istniejących ogniw paliwowych, stałotlenkowe ogniwa paliwowe (SOFC) uważane są za odpowiednią technologię dla mikro- i małych jednostek energetycznych o mocy wyjściowej w zakresie od 0 kW do 50 kW. Paliwo węglowodorowe dostarczane do układu wymaga wstępnej obróbki w celu przekształcenia go w gazy bogate w wodór, które następnie są kierowane do anod ogniw paliwowych. Reforming parowy jest obecnie uważany za wiodącą technologię w stacjonarnych aplikacjach. Aby zapobiegać tworzeniu się i osadzaniu węgla na powierzchniach anodowych, należy utrzymać odpowiedni stosunek pary do węgla (stosunek S/C) w procesorze paliwa. W zależności od warunków i parametrów pracy, system oparty na technologii SOFC może stać się neutralny wodnie, co wiąże się z wyeliminowaniem konieczności dostarczania wody uzupełniającej do reformera parowego. W niniejszym badaniu przeanalizowano dwa stosy połączone szeregowo w celu określenia wymaganych parametrów na poziomie stosów oraz kompletnych układów, co umożliwienia działania w obszarach wodno-neutralnych. W ramach publikacji przedstawiono wyniki badań i omówiono parametry wykorzystane do osiągnięcia trybu neutralnego wodnie. Odpowiednie gęstości prądu powinny znajdować się w zakresie od 0,17 do 0,3 A/cm2 i od 0,06 do 0,18 A/cm2, odpowiednio dla pierwszego i drugiego stosu.

The stationary power systems with fuel cells offer a great advantage for highly efficient production of electricity and heat. Among the existing fuel cell technologies, the solid oxide fuel cells (SOFC) are considered as a suitable technology for micro- and small-scale power units with output in the range from sub-kW to 50 kW. The hydrocarbonaceous fuel supplied to the system requires pre-treatment in order to convert it into hydrogen-rich gases directed to the anodic compartments of the fuel cell stack. The steam reforming is now considered as a leading technology in stationary applications. For prevention of carbon formation and deposition in the anodic compartments, the sufficient steam to carbon ratio (S/C ratio) has to be maintained in the fuel processor. Depending on the working condition, the SOFC-based system can become water neutral and the necessity to supply make-up water for the steam reforming can be eliminated. In the current study, two stacks connected in series were analysed to define the required parameters at the level of the stacks and at the level of system to allow operation in water neutral conditions. The results of the study are presented and the conditions for achieving water neutrality are discussed. The corresponding current densities should be in range 0.17–0.30 A/cm2 and 0.06–0.18 A/cm2 in the first and second stack, respectively.

Keywords

SOFC; micro-cogeneration; water management; system analysis; modeling, SOFC; mikro-kogeneracja; zarządzanie wodą; analizy systemowe; modelowanie

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%