Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Energy
Article . 2018
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Variant analysis of the efficiency of industrial scale power station based on DC-SOFCs and DC-MCFCs

Authors: Jakub Kupecki; Marek Skrzypkiewicz; Konrad Motylinski;

Variant analysis of the efficiency of industrial scale power station based on DC-SOFCs and DC-MCFCs

Abstract

The concept of direct carbon fuel cell (DCFC) can be realized using different types of fuel cells. The most important advances were achieved for solid oxide fuel cells or molten carbonate fuel cells, DC-SOFC and DC-MCFC, respectively. Utilization of solid fuels, such as coal, char or biochar in high temperature electrochemical reaction offers a great potential in terms of the electric efficiency. While in conventional gas-fed fuel cells the transference number is equal 2, the electrochemical oxidation of solid fuel - in theory - can be realized with ion transfer number of 4. In the current study several configurations of DCFC systems based on SOFCs and MCFCs were analysed. The focus was on determining the efficiency for systems with different methods of delivering the fuel and alternative post-combustion systems. The article presents variant analysis of eight configurations of power plants based on DCFCs. The modified parameters included the cell voltage, effective transference number and the fuel utilization. Each configuration is presented and discussed. The efficiency of the alternative configurations lays in the range from 36 to 64% (LHV-based). Authors explain the methodology of the study and quantify the results as well provide justification concerning the Assumptions.

Koncepcja węglowego ogniwa paliwowego (DCFC) może być realizowana wykorzystując różne typy ogniw paliwowych. Największe postępy osiągnięto dla stałotlenkowych ogniw paliwowych (DC-SOFC) oraz dla ogniw paliwowych ze stopionym węglem (DC-MCFC). Wykorzystanie paliw stałych, tj. węgiel, węgiel brunatny lub biowęgiel w wysokotemperaturowej reakcji elektrochemicznej, ma ogromny potencjał pod względem sprawności elektrycznej. Podczas gdy w konwencjonalnych ogniwach paliwowych zasilanych gazem, liczba przenoszenia wynosi 2, to w przypadku elektrochemicznego utleniania paliw stałych, w teorii, liczba przenoszenia jonów wynosi 4. W ramach niniejszej pracy zbadano kilka konfiguracji układów DCFC opartych na SOFC i MCFC. Skoncentrowano się głównie na określeniu sprawności systemów energetycznych dla różnych metod dostarczania paliwa i instalacji dopalania. W artykule przedstawiono analizę wariantową ośmiu konfiguracji elektrowni opartych na DCFC. Modyfikowanymi parametrami były napięcie ogniwa, efektywna liczba przenoszenia oraz wykorzystanie paliwa. Każda z konfiguracji została zaprezentowana i omówiona. Sprawność zbadanych konfiguracji znajduje się w zakresie od 36 do 64% (oparte na LHV). Autorzy wyjaśniają metodologię badania, określają ilościowo wyniki oraz uzasadniają założenia.

Keywords

węglowe ogniwa paliwowe; DCFC; DC-SOFC; MC-MCFC; reakcja Boudouarda, direct carbon fuel cells; DCFC; DC-SOFC; DC-MCFC; Boudouard reaction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%