
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine

Abstract Battery health monitoring and management is critically important for electric vehicle performance and economy. This paper presents a multiple health indicators-based and machine learning-enabled state-of-health estimator for prognostics and health management. The multiple online health indicators without the influence of different loading profiles are used as effective signatures of the health estimator for effective quantification of capacity degradation. An extreme learning machine is introduced to capture the underlying correlation between the extracted health indicators and capacity degradation to improve the speed and accuracy of machine learning for online estimation. The proposed estimator is also compared to the traditional BP neural network. The associated results indicate that the maximum estimation error of the proposed health management strategy is less than 2.5%, and it has better performance and faster speed than the BP neural network.
- Dalian Polytechnic University China (People's Republic of)
- State Key Laboratory of Structural Analysis for Industrial Equipment China (People's Republic of)
- Guangxi University China (People's Republic of)
- Dalian Polytechnic University China (People's Republic of)
- Guangxi University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).263 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
