Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.60692/ky...
Other literature type . 2018
Data sources: Datacite
https://dx.doi.org/10.60692/2q...
Other literature type . 2018
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design and simulation of an integrated process for biodiesel production from waste cooking oil using supercritical methanolysis

تصميم ومحاكاة عملية متكاملة لإنتاج الديزل الحيوي من نفايات زيت الطهي باستخدام تحليل الميثان فوق الحرج
Authors: Mamdouh A. Gadalla; Mamdouh A. Gadalla; O Aboelazayem; O Aboelazayem; Basudeb Saha;

Design and simulation of an integrated process for biodiesel production from waste cooking oil using supercritical methanolysis

Abstract

La transestérification non catalytique a été reconnue comme une technique efficace pour la production de biodiesel. Il présente de nombreux avantages par rapport à la transestérification catalytique classique, où il élimine les difficultés de préparation et de séparation des catalyseurs. Il produit également un rendement élevé en biodiesel en un temps de réaction plus court. Cependant, il nécessite des conditions de fonctionnement difficiles à température et pression de réaction élevées, en plus d'utiliser un large excès de méthanol. Dans le but d'atténuer ces problèmes, une conception/intégration de processus pour la production de biodiesel a été réalisée. Le processus a été soumis à une intégration de masse et d'énergie pour minimiser les besoins en méthanol frais et pour minimiser les énergies de chauffage et de refroidissement, respectivement. Une nouvelle méthode graphique d'analyse de pincement a été utilisée pour évaluer la performance énergétique d'une conception de la littérature pour le processus actuel. Il a ensuite été utilisé pour développer un réseau d'échangeurs de chaleur optimal (HEN) pour le processus en faisant correspondre les flux de processus. En outre, la conception réalisée à l'aide d'une simulation commerciale automatisée (Aspen Energy Analyzer) a été évaluée à l'aide de la même méthode graphique. La conception de la POULE produite à partir de la méthode graphique a atteint les résultats optimaux par rapport aux objectifs énergétiques.

La transesterificación no catalítica ha sido reconocida como una técnica eficaz para la producción de biodiésel. Tiene muchas ventajas sobre la transesterificación catalítica convencional, donde elimina las dificultades de preparación y separación de los catalizadores. También produce un alto rendimiento de biodiesel en un tiempo de reacción más corto. Sin embargo, requiere condiciones de operación duras a alta temperatura y presión de reacción, además de usar un gran exceso de metanol. En un intento por mitigar estos problemas, se ha realizado un proceso de diseño/integración para la producción de biodiesel. El proceso se ha sometido a integración de masa y energía para minimizar los requisitos de metanol fresco y para minimizar las energías de calefacción y refrigeración, respectivamente. Se ha utilizado un nuevo método gráfico de análisis de pellizcos para evaluar el rendimiento energético de un diseño de literatura para el proceso actual. Posteriormente, se ha utilizado para desarrollar una red de intercambiadores de calor (HEN) óptima para el proceso mediante el emparejamiento de las corrientes del proceso. Además, el diseño realizado mediante el uso de una simulación comercial automatizada (Aspen Energy Analyzer) se ha evaluado utilizando el mismo método gráfico. El diseño de GALLINA producido a partir del método gráfico ha logrado los resultados óptimos con respecto a los objetivos energéticos.

Non-catalytic transesterification has been recognised as an effective technique for biodiesel production. It has many advantages over conventional catalytic transesterification, where it eliminates the difficulties of catalysts preparation and separation. It also produces high biodiesel yield in shorter reaction time. However, it requires harsh operating conditions at high reaction temperature and pressure, in addition to using large excess of methanol. In an attempt to mitigate these problems, a process design/integration for biodiesel production has been performed. The process has been subjected to both mass and energy integration to minimise fresh methanol requirements and to minimise heating and cooling energies, respectively. A new graphical Pinch Analysis method has been used to evaluate the energy performance of a literature design for the current process. It has been subsequently used to develop an optimum heat exchanger network (HEN) for the process by matching of process streams. Also, the design made by using an automated commercial simulation (Aspen Energy Analyzer) has been evaluated using the same graphical method. The produced HEN design from graphical method has achieved the optimum results with respect to energy targets.

تم التعرف على التحويل غير التحفيزي كأسلوب فعال لإنتاج الديزل الحيوي. له العديد من المزايا على التحويل التحفيزي التقليدي، حيث يزيل صعوبات تحضير المحفزات وفصلها. كما أنه ينتج عائدًا مرتفعًا من الديزل الحيوي في وقت تفاعل أقصر. ومع ذلك، فإنه يتطلب ظروف تشغيل قاسية عند درجة حرارة وضغط تفاعل عاليين، بالإضافة إلى استخدام فائض كبير من الميثانول. في محاولة للتخفيف من هذه المشاكل، تم تنفيذ تصميم/تكامل عملية لإنتاج الديزل الحيوي. تم إخضاع العملية لكل من تكامل الكتلة والطاقة لتقليل متطلبات الميثانول الطازج وتقليل طاقات التسخين والتبريد، على التوالي. تم استخدام طريقة تحليل قرصة رسومية جديدة لتقييم أداء الطاقة لتصميم الأدبيات للعملية الحالية. تم استخدامه لاحقًا لتطوير شبكة مبادل حراري مثالية (HEN) للعملية من خلال مطابقة تدفقات العملية. كما تم تقييم التصميم الذي تم باستخدام محاكاة تجارية آلية (Aspen Energy Analyzer) باستخدام نفس الطريقة الرسومية. حقق تصميم الدجاجة المنتج من الطريقة الرسومية النتائج المثلى فيما يتعلق بأهداف الطاقة.

Keywords

330, Technical Aspects of Biodiesel Production, Biomedical Engineering, FOS: Mechanical engineering, Organic chemistry, 0915 Interdisciplinary Engineering, FOS: Medical engineering, Process integration, Environmental science, Catalysis, Process simulation, Engineering, Pinch analysis, Supercritical fluid, Graphical Pinch Analysis, State-of-the-Art in Process Optimization under Uncertainty, Waste management, Energy, Methanol, Mass integration, Waste cooking oil, Computer science, Mechanical engineering, 620, Process (computing), Biodiesel production, Chemistry, Operating system, Transesterification, Model Predictive Control in Industrial Processes, Heat exchanger, Control and Systems Engineering, Physical Sciences, Process engineering, Process Intensification, Process design, Biodiesel, Heat integration, 0913 Mechanical Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
Green
bronze