Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of an urban FEW nexus online analyzer to support urban circular economy strategy planning

Authors: Marco Casazza; Jingyan Xue; Sergio Ulgiati; Sergio Ulgiati; Gengyuan Liu; Gengyuan Liu;

Development of an urban FEW nexus online analyzer to support urban circular economy strategy planning

Abstract

Abstract Growth of urban population around the world and, particularly, within urban areas, has placed various pressing challenges on Food, Energy, and Water (FEW) such as food security, water safety as well as energy scarcity and so on. Current studies on urban FEW nexus are mainly focused on the correlation analysis of elements by pairs, while these works are developed separately. With respect to the methods, the existing researches mostly adopt the bottom-up approach, accounting for the direct relationship between the individual production sectors. While the associations between the internal elements of the system still lack of simulation. In this study, we aim at developing an online open access tool for cities, the Urban Circular Economy Calculator (UCEC), which enables to develop different circular economy scenarios associated to FEW management. UCEC v1.0 uses Beijing data as test case. In particular, more than 20 circular economy policies related on food, energy and water are selected and divided into 6 categories. Long-term simulations on the social, economic and environmental impacts are provided to test the trajectories of policy effects. Being an open access tool, UCEC can be used also for supporting participatory processes as an urban management instrument. The solution is economically and financially feasible, due to the low level of technical requirements. The necessity of such a tool is proved by the societal need of transition toward a low-carbon and sustainable framework, which can be effectively supported by the introduction of circular economy. This transition, such as the idea behind UCEC, should preserve (or even improve) the societal wellbeing, while increasing basic resources (i.e.: FEW) accessibility, security and preservation.

Country
Italy
Keywords

Circular economy; Energy-water-food; Nexus; Policy; Urban; Civil and Structural Engineering; Building and Construction; Pollution; Mechanical Engineering; Industrial and Manufacturing Engineering; Electrical and Electronic Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 1%
Top 10%
Top 10%