
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy centric selection of machining conditions for minimum cost

Abstract In the past, the cutting conditions that meet the economic and environmental objectives of the specified manufacturing process were selected based on minimum tooling cost and/or minimum electrical energy criterion. However, detailed modelling of electrical energy based on tool life and cost criterion has not been addressed. In this study, machining tests were conducted to develop a cost model which includes machining energy, and to assess the impact of the extended tool life model with regards to selection of cutting conditions, electricity cost and tool wear effect that satisfy these objectives. The model was validated with an industrial case study. Results show that cost savings at minimum energy were achieved. Hence, substantial cost savings could be achieved by selecting optimized machining parameters which could reduce machining costs by 47% compared to using tool supplier recommended feeds, depth of cut and cutting velocity. Thus, cost could be optimized fairly accurately without explicitly modelling energy demand due to the relative low contribution of energy costs compared to tooling costs. The optimized energy costs leads to minimum associated carbon footprint and reduces overall product cost. This creates an incentive for manufacturing companies to investigate the sustainability and energy efficiency of their manufacturing processes.
- Edo University Iyamho Nigeria
- University of Salford United Kingdom
- Akwa Ibom State University Nigeria
- Akwa Ibom State University Nigeria
Energy efficiency, Sustainable machining, Modelling, Machining cost
Energy efficiency, Sustainable machining, Modelling, Machining cost
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
