
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen

Abstract In this study, the authors developed an Optimal Power Generation Mix model, which takes into account the supply chain of imported and domestically produced hydrogen, also modeling the intermittency of renewable energy at a 10-min resolution, and applied it to the case of Japan, to investigate quantitatively the possibility of achieving zero emission in 2050. Even if the costs of wind and solar PV decline drastically towards 2050 and the huge potentials that have been assumed in the literature are realized, the total system costs escalate significantly with very high shares of intermittent renewables. Since the use of hydrogen produced by excess electricity from renewable power generation sources can only make a slight contribution to reducing this escalation, it would be invaluable to introduce at least a significant amount of electricity generated by “zero-emission thermal power” technologies, including CO2-free imported hydrogen or conventional thermal power generation with carbon capture and sequestration (CCS). Nuclear power is also estimated as being effective in reducing the cost hike associated with achieving zero emissions. The results of this study could contribute to giving insights regarding global deployment of hydrogen-related technologies, as well as to presenting a frame of reference for Japan's future energy policies.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).56 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
