
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A new hybrid model to predict the electrical load in five states of Australia

Short-term electrical load forecasting is an important part in the management of electrical power because electrical load is an extreme, complex non-linear system. To obtain parameter values that provide better performances with high precision, this paper proposes a new hybrid electrical load forecasting model, which combines ensemble empirical mode decomposition, extreme learning machine, and grasshopper optimization algorithm for short-term load forecasting. The most important difference that distinguishes this electrical load forecasting model from other models is that grasshopper optimization can search suitable parameters (weight values and threshold values) of extreme learning machine, while traditional parameters are selected randomly. It is applied in Australia electrical load prediction to show its superiority and applicability. The simulation studies are carried out using a data set collected from five main states (New South Wales, Queensland, Tasmania, South Australia and Victoria) in Australia from February 1 to February 27, 2018. Compared with all considered basic models, the proposed hybrid model has the best performance in predicting electrical load.
- Australian Catholic University Australia
- Taobao China (People's Republic of)
- Australian Catholic University Australia
- Taobao China (People's Republic of)
- Changzhi University China (People's Republic of)
Extreme learning machine, Ensemble empirical mode decomposition, forecast, 620, extreme learning machine, Electrical load, Grasshopper optimization algorithm, Forecast, electrical load, ensemble empirical mode decomposition, grasshopper optimization algorithm
Extreme learning machine, Ensemble empirical mode decomposition, forecast, 620, extreme learning machine, Electrical load, Grasshopper optimization algorithm, Forecast, electrical load, ensemble empirical mode decomposition, grasshopper optimization algorithm
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).57 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
