Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Physical adequacy of a power generation system: The case of Spain in the long term

Authors: Luis Mª Abadie; José M. Chamorro;

Physical adequacy of a power generation system: The case of Spain in the long term

Abstract

Abstract Generation adequacy is a key ingredient to security of electricity supply. We develop a stochastic model of demand and supply (from different technologies) for measuring it from a physical or technical point of view. We adopt several metrics of supply shortfalls. Next we demonstrate the model by example. Because of limited interconnections with neighboring countries, Spain can be considered an electric island. We get numerical estimates of the parameters underlying the model. We then resort to Monte Carlo simulation to derive the risk profile of the adequacy metrics in the coming decades. We consider up to ten scenarios, with different demand paths and generation parks. The proposed deployment of renewable technologies and the envisaged closure of coal-fired and nuclear stations result in greater risk of shortages. For one, assuming that demand grows at 1.36% per year, from 2020 to 2030 the expected energy not served increases more than 400-fold as coal and nuclear capacities are reduced; the factor runs into the tens of thousands by 2040 and 2050 when those technologies cease to operate. These results are potentially important for policy makers, system operators, and power companies involved in the construction of the European internal electricity market.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%