Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Contribution and investigation to compare models parameters of (PEMFC), comprehensives review of fuel cell models and their degradation

Authors: Nordine Sahouane; Ahmed Belasri; Salah Lachtar; Ali Benatiallah; Ammar Necaibia; Mohamed Blal; Mohamed Blal;

Contribution and investigation to compare models parameters of (PEMFC), comprehensives review of fuel cell models and their degradation

Abstract

Abstract This paper presents a comparative study related to the impacts of the operating parameters. A structural design and modeling approach of the polymer electrolyte membrane (PEMFC) fuel cell is presented. The purpose of this study is to review many control and clarification strategies for fuel cell components that have been conducted by several researchers for improving the performance. The models that have been studied and compared to literature models appear clearly the dynamics of the PEM fuel cell. Consequently, the fuel cell performance is related to several parameters, which are ( δ , D H 2 , D O 2 , I 0 , I lim , r ). A simulation by MATLAB software is used to highlighting the powerful model compared to the mentioned models. The simulation results showed that many parameters change under different operating conditions such as, pressure, temperature and humidity. Finally, an accurate study shown that model 02 is the best model with an R2 value of 0.9994. This model has demonstrated a close agreement with the experimental data provided by a real fuel cell in the literature.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    110
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
110
Top 1%
Top 10%
Top 1%