
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ejectors on the cutting edge: The past, the present and the perspective

handle: 11311/1168811
Abstract The applications of ejectors are many and encompass the refrigeration, the power generation and the chemical sectors. On one hand, ejector technology needs limited maintenance, has low operational costs and has no restrictions concerning the working fluids; on the other hand, the complex single- and multi-phase fluid dynamics make ejector design and performance prediction a real challenge. This perspective explores the main advancements in ejector technology and proposes a critical discussion with an outlook for the future research; the proposed discussion is grounded on the multi-scale relationship between the “local-scale” phenomena and the “component-scale” performances. After a look at the past, this perspective examines the ongoing research activities and achievements regarding four state-of-the-art research areas, namely refrigeration systems, power conversion plants, chemical process and technology and computational methods. For the different research areas discussed, directions and opportunities for the future research activities are appraised. Finally, this perspective defines a fundamental challenge that needs be addressed in the forthcoming long-term activities: “the multi-scale ejector challenge”.
Chemical processes, Multi-scale ejector challenge, Power conversion systems, Ejector technology, Refrigeration systems, Modeling approaches
Chemical processes, Multi-scale ejector challenge, Power conversion systems, Ejector technology, Refrigeration systems, Modeling approaches
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).79 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
