
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A multi-layer energy modelling methodology to assess the impact of heat-electricity integration strategies: The case of the residential cooking sector in Italy

handle: 11311/1074691
Abstract To support the ongoing transition towards smart and decarbonised energy systems, energy models need to expand their scope and predictive capabilities. To this end, this study proposes a multi-layer modelling methodology that soft-links (i) a stochastic bottom-up load curves estimation model, (ii) a technology-rich energy system optimisation model (Calliope) and (iii) a Multi-Regional Input-Output model (Exiobase v.3), and applies it to investigate the economic and environmental consequences entailed by a massive replacement of traditional gas-fired kitchens with induction kitchens within the Italian residential sector. Two scenarios are considered for the analysis: (i) business as usual (BAU, 2015 energy system configuration), and (ii) national energy strategy (SEN, configuration prospected in 2030). The results show how the intervention produces positive net effects on the primary energy balance of the energy sector only when sustained by adequate shares of renewables, as in the SEN (−1.5 TWh∙y−1); otherwise, increased operation of fossil-fuel plants offsets gas savings (BAU, +2 TWh∙y−1). Nonetheless, feedbacks on other productive sectors entail additional energy consumption and emissions, thus counterpoising positive effects obtained within the energy sector even in the SEN scenario. Still, higher renewables penetration reduces overall additional emissions from 2.07 Mton∙y−1 for BAU to 0.88 Mton∙y−1 for the SEN.
Cooking devices; Electrification pathways; Energy modelling; Heat-electricity integration; Input-output analysis; Integrated assessment models; Civil and Structural Engineering; Building and Construction; Pollution; Mechanical Engineering; Industrial and Manufacturing Engineering; Electrical and Electronic Engineering
Cooking devices; Electrification pathways; Energy modelling; Heat-electricity integration; Input-output analysis; Integrated assessment models; Civil and Structural Engineering; Building and Construction; Pollution; Mechanical Engineering; Industrial and Manufacturing Engineering; Electrical and Electronic Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
