Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: Merging 2nd and 3rd generation feedstocks for enhanced bio-oil production

Authors: Bin Cao; Shuang Wang; Yongqiang Feng; Bo Zhang; Yamin Hu; Xinlin Liu; Zhixia He; +7 Authors

Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: Merging 2nd and 3rd generation feedstocks for enhanced bio-oil production

Abstract

Abstract The present work aimed to explore the optimized conditions of hydrothermal co-liquefaction (co-HTL) of the green seaweed “Enteromorpha clathrata (EN)” and the lignocellulosic agricultural waste “rice husk (RH)”. Separate hydrothermal liquefaction (HTL) of EN and RH showed bio-oil yields of 26.0% and 45.6%, respectively. However, co-HTL under optimized conditions showed significant increase in the bio-oil yield by 71.7% over that of EN, and insignificant difference with that of RH. Nevertheless, the conversion ratio of co-HTL showed 10.6% significant increase over that of RH. GC-MS results showed that main compounds of EN and RH bio-oil lump into the C15–C20 and C5–C12 regions, mainly representing carbon range of diesel and gasoline, respectively. Short-chain (C5–C12) and long-chain (C14–C20) compounds in the bio-oil obtained by co-HTL represented 72% and 28%, respectively. In addition, the ratio of aromatic compounds in the bio-oil of RH was reduced by 9.3% as a result of co-HTL. In conclusion, results suggested 50% ethanol as a co-solvent, 300 °C and 45 min as optimum conditions for co-HTL of EN:RH (1:1 w/w). The present study demonstrated an efficient route for co-HTL of 3rd generation feedstocks with 2nd generation feedstocks which will have a significant impact on large-scale applications.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    126
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
126
Top 1%
Top 10%
Top 1%