
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: Merging 2nd and 3rd generation feedstocks for enhanced bio-oil production

Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: Merging 2nd and 3rd generation feedstocks for enhanced bio-oil production
Abstract The present work aimed to explore the optimized conditions of hydrothermal co-liquefaction (co-HTL) of the green seaweed “Enteromorpha clathrata (EN)” and the lignocellulosic agricultural waste “rice husk (RH)”. Separate hydrothermal liquefaction (HTL) of EN and RH showed bio-oil yields of 26.0% and 45.6%, respectively. However, co-HTL under optimized conditions showed significant increase in the bio-oil yield by 71.7% over that of EN, and insignificant difference with that of RH. Nevertheless, the conversion ratio of co-HTL showed 10.6% significant increase over that of RH. GC-MS results showed that main compounds of EN and RH bio-oil lump into the C15–C20 and C5–C12 regions, mainly representing carbon range of diesel and gasoline, respectively. Short-chain (C5–C12) and long-chain (C14–C20) compounds in the bio-oil obtained by co-HTL represented 72% and 28%, respectively. In addition, the ratio of aromatic compounds in the bio-oil of RH was reduced by 9.3% as a result of co-HTL. In conclusion, results suggested 50% ethanol as a co-solvent, 300 °C and 45 min as optimum conditions for co-HTL of EN:RH (1:1 w/w). The present study demonstrated an efficient route for co-HTL of 3rd generation feedstocks with 2nd generation feedstocks which will have a significant impact on large-scale applications.
- Energy Research Institute China (People's Republic of)
- Jiangsu University China (People's Republic of)
- Jiangsu University China (People's Republic of)
- Tanta University Egypt
- Tanta University Egypt
5 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).126 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
