Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of different flow schemes on heat recovery from Enhanced Geothermal Systems (EGS)

Authors: Pranay Asai; Palash Panja; John McLennan; Milind Deo;

Effect of different flow schemes on heat recovery from Enhanced Geothermal Systems (EGS)

Abstract

Abstract Operational optimization is the key to maximize the heat extraction efficiency of Enhanced Geothermal Systems (EGS). Injection/production flowrate is one of the operational parameters that can be easily manipulated to produce desired amount of energy. In this study, the effect of different flow schemes on the rate of heat production is analyzed over a period of 30 years. Seven flow schemes (four continuous functions namely constant flow, linear flow, exponential flow, mirror exponential flow, and three step functions with step sizes of six months, three years and ten years) developed on the basis of mathematical functions were examined. A doublet EGS model with a single fracture was simulated using a commercial thermal reservoir simulator. The reservoir and well data were obtained from the FORGE (Frontier Observatory for Research in Geothermal Energy) site at Milford Utah. The results were analyzed on the basis of their temperature decline curves for the produced water and the total amount of heat extracted over the entire period. The exponential flow scheme is the optimum case considering the rise in energy demand over the next 30 years. The amount of heat extracted per unit volume of water decreases with increase in total water volume circulated.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 1%
Top 10%
Top 1%