Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance optimization of common plate-type thermoelectric generator in vehicle exhaust power generation systems

Authors: Wei He; Rui Guo; Hiroki Takasu; YUKITAKA KATO; Shixue Wang;

Performance optimization of common plate-type thermoelectric generator in vehicle exhaust power generation systems

Abstract

Abstract A plate-type thermoelectric generation (TEG) system is typically used in engine exhaust waste heat recovery systems because of its appropriate structure. To obtain an effective design of these TEG systems, this study focuses primarily on optimal matching performance analysis, by building a complete numerical TEG model with the finite element method using FORTRAN. A commercial-type thermoelectric material is used in the numerical calculation. Moreover, all types of work conditions with different exhaust parameters (mf = 10–50 g s−1 and Tfin = 300–600 °C) and cooler’s heat transfer processes are included. When peak net power is achieved, all corresponding optimal features are analyzed, where both air-cooling and water-cooling methods are considered. The results indicate that, for any type of work condition, the optimal height remains the same (Bopt = 7.0 mm for the air-cooling method and Bopt = 4.0 mm for the water-cooling method) and the other optimal parameters can be expressed by fitting correlations, which can deduce the optimal length (Lopt) and width (wopt) of an exhaust heat exchanger (for example, they are Lopt = 1.55 m and wopt = 0.78 m when mf = 50 g s−1, Tfin = 500 °C, and hc = 80 W m−2 K−1 for the air-cooling method). The introduced fitting correlations are verified to have a high accuracy.

Country
Japan
Related Organizations
Keywords

620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%