
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enforcing optimal operation in solid-oxide fuel-cell systems

Abstract This paper describes an optimization strategy for operating solid-oxide fuel-cell systems at optimal efficiency. Specifically, we present the experimental validation of a real-time optimization (RTO) strategy applied to a commercial solid-oxide fuel-cell system. The proposed RTO scheme effectively pushes the system to higher levels of efficiency and maintains the system there despite perturbations by tracking active constraints. The optimization approach uses either steady-state measurements, or transient measurements in combination with a dynamic model, and can deal effectively with plant-model mismatch. In the reported experiments, the approach drives the system to the desired power demand at optimal efficiency. The experimental fuel-cell system reached 65% DC electrical efficiency. As such, the proposed RTO scheme is a promising candidate for enforcing optimal micro-CHP operation. In addition, the approach can deal with slow drifts such as degradation without compromising on efficiency. Finally, and important from a practical point of view, we suggest guidelines for safe and optimal operation.
- École Polytechnique Fédérale de Lausanne EPFL Switzerland
- Karlsruhe Institute of Technology Germany
ddc:004, model-based control, DATA processing & computer science, stack, sofc system, plant-model mismatch, adaptation, 004, time-scale separation, constraint adaptation, power-system, optimal efficiency, real-time optimization, constraints, info:eu-repo/classification/ddc/004
ddc:004, model-based control, DATA processing & computer science, stack, sofc system, plant-model mismatch, adaptation, 004, time-scale separation, constraint adaptation, power-system, optimal efficiency, real-time optimization, constraints, info:eu-repo/classification/ddc/004
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
