
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
WHTO: A methodology of calculating the energy extraction of wave energy convertors based on wave height reduction

handle: 10871/123991
Abstract Wave energy has significant worldwide exploitable resource and its exploitation has attracted renewable energy investigator’ attention. Great progress on calculating device performance has been made by means of theoretical, numerical and model tests. This paper presents a method of calculating the energy extraction of a wave energy converter (WEC) based on Wave Height Take-off (WHTO). The method provides a means to improve the capture efficiency of designs, including demonstrating how well different kinds of WEC are optimized for certain wave conditions. Numerical simulations of a heaving buoy and a bottom-hinged pendulum in a 2D wave flume with different damping types (linear and nonlinear) are presented. The results show that the difference between the calculated energy extraction from the wave height reduction and from the model power take-off (PTO) was not significant in a 2D flume. Physical model tests were conducted using a simplified PTO consisting of a system of lifting weights, used to measure the energy extraction directly. Based on both numerical and physical model analyses, the article defines WHTO, which is equivalent to energy extracted by PTO, but determined without taking direct measurements. This paper aims to promote and validate the concept of the WHTO.
- University of Exeter United Kingdom
- Plymouth University United Kingdom
- Ocean University of China China (People's Republic of)
Wave energy, Wave height take-off, 600, Numerical simulation, 620, Model test
Wave energy, Wave height take-off, 600, Numerical simulation, 620, Model test
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
