
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Small size thermoelectric power supply for battery backup

The large use of portable devices imposes a new interest in the development of power backup systems with constraints in terms of compactness and safety. Such systems have to match the use as battery backups as well as a self-standing operating. Thermoelectric generators (TEGs) allow access to new ways of power supply thanks to their long lifetimes, their competitive efficiencies at low powers and their capability of providing multiple outputs. In this work, a TEG based on catalytic combustor has been proposed aiming to approach electrical output and dimension of the commonly used AA batteries. Catalytic combustion provides the possibility to profit from the high power densities of hydrocarbon in limited space and low burning temperatures meeting the needs of the TEGs as a heat engine. The system has been characterized for different fuel flow rates. The measured TEG efficiency is 3.4% with the electrical power output of 5.3 W. The system thermal behavior has been experimentally investigated according to literature models, by evaluating the effectiveness of the design and of the chosen practical solutions. The system produced reached the electrical output target, matching the characteristics proper of most of the common commercial AA batteries in a similar device volume.
Thermoelectric generator
Thermoelectric generator
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).25 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
