Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling and control of PEMFC air supply system based on T-S fuzzy theory and predictive control

Authors: Duo Yang; Rui Pan; Yujie Wang; Zonghai Chen;

Modeling and control of PEMFC air supply system based on T-S fuzzy theory and predictive control

Abstract

Abstract The proton exchange membrane fuel cell has become the most widely used fuel cell in fuel cell vehicles. An effective and accurate control approach for its air supply system is crucial to ensure the performance and safety of the fuel cell system. In order to ensure safe and efficient operation of the air supply, this paper provides a novel modeling and control method based on Takagi-Sugeno fuzzy theory and predictive control. A local controlled autoregressive integrated moving average model for the air flow control is put forward, then the control-oriented T-S model is designed based on multi-model scheduling. The controller architecture is based on a fuzzy generalized predictive controller. The proposed controller can control the oxygen excess ratio in the ideal range and effectively suppress the fluctuation caused by the load change. In addition, an optimal control strategy is proposed aiming at avoiding the oxygen starvation and maximizing the system net power. According to the control results, the proposed method is proved to be able to accurately control the air supply at desire values. It enhances system output performance by fast response to better support the vehicle load variation, and improving the net power and system energy efficiency.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 1%
Top 10%
Top 1%
bronze