Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cyclic N2 injection for enhanced coal seam gas recovery: A laboratory study

Authors: Jia Lin; Ting Ren; Yuanping Cheng; Jan Nemcik; Gongda Wang;

Cyclic N2 injection for enhanced coal seam gas recovery: A laboratory study

Abstract

Abstract In this study, laboratory tests using six-cycles of nitrogen (N2) injection were carried out to investigate nitrogen flushing effect on coal seam gas recovery. In each test, N2 was injected for 200 min into a coal sample saturated with carbon dioxide (CO2), in a triaxial-loaded cell. Nitrogen injection was paused for about 20 h to allow gas desorption from the coal sample before commencing the next cycle. It was observed that CO2 levels of the outlet flow recovered from 3%-7% to 20%–40%, with no significant change in gas flow rate. The displaced CO2 in each cycle accounts for 4–7% of the initial total gas volume. Analysis of the test results indicated that at least 22 injection cycles were required to drop the residual gas content below the threshold limit value (TLV). The test results also confirmed that N2 injection can promote gas desorption from coal matrix and reduce un-desorbable residual gas content. In comparison with the continuous injection method, the flushing efficiency was lower for the cyclic injection method (5.6 days vs 21.5 days). However N2 consumption was about 60% less, and its utilization ratio was higher for cyclic injection method. Additionally, a post-injection effect of seam gas desorption was observed following each injection cycle. This study demonstrated that cyclic N2 injection method has several potential advantages for different field applications. This injection method can improve coal seam gas recovery with much reduced N2 consumption, and in particular, reduce the cost for separating gas mixture product in nitrogen enhanced coalbed methane recovery (N2-ECBM) project.

Country
Australia
Related Organizations
Keywords

seam, coal, n2, enhanced, 600, Science and Technology Studies, Engineering, injection, gas, recovery:, study, cyclic, laboratory

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 1%
Top 10%
Top 1%