Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VU Research Reposito...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A hybrid SVR-PSO model to predict a CFD-based optimised bubbling fluidised bed pyrolysis reactor

Authors: Salman Jalalifar; Mojtaba Masoudi; Rouzbeh Abbassi; Vikram Garaniya; Mohammadmahdi Ghiji; Fatemeh Salehi;

A hybrid SVR-PSO model to predict a CFD-based optimised bubbling fluidised bed pyrolysis reactor

Abstract

Comprehensive scrutiny is necessary to achieve an optimised set of operating conditions for a pyrolysis reactor to attain the maximum amount of the desired product. To reach this goal, a computational fluid dynamic (CFD) model is developed for biomass fast pyrolysis process and then validated using the experiment of a standard lab-scale bubbling fluidised bed reactor. This is followed by a detailed CFD parametric study. Key influencing parameters investigated are operating temperature, biomass flow rate, biomass and sand particle sizes, carrier gas velocity, biomass injector location, and pre-treatment temperature. Machine learning algorithms (MLAs) are then employed to predict the optimised conditions that lead to the maximum bio-oil yield. For this purpose, support vector regression with particle swarm optimisation algorithm (SVR-PSO) is developed and applied to the CFD datasets to predict the optimum values of parameters. The maximum bio-oil yield is then computed using the optimum values of the parameters. The CFD simulation is also performed using the optimum parameters obtained by the SVR-PSO. The CFD results and the values predicted by the MLA for the product yields are finally compared where a good agreement is achieved.

Country
Australia
Keywords

support vector regression (SVR), SVR, biomass fast pyrolysis process, particle swarm optimisation (PSO), 0915 Interdisciplinary Engineering, MLAs, SVR-PSO, machine learning algorithms, bubbling fluidised bed reactor, fast pyrolysis process, parametric study, 660, PSO, 621, computational fluid dynamic (CFD) simulation, Institute for Sustainable Industries and Liveable Cities, CFD

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 1%
Top 10%
Top 1%
Green
hybrid