
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection

When State of Charge, State of Health, and parameters of the Lithium-ion battery are estimated simultaneously, the estimation accuracy is hard to be ensured due to uncertainties in the estimation process. To improve the estimation performance a sequential algorithm, which uses frequency scale separation and estimates parameters/states sequentially by injecting currents with different frequencies, is proposed in this paper. Specifically, by incorporating a high-pass filter, the parameters can be independently characterized by injecting high-frequency and medium-frequency currents, respectively. Using the estimated parameters, battery capacity and State of Charge can then be estimated concurrently. Experimental results show that the estimation accuracy of the proposed sequential algorithm is much better than the concurrent algorithm where all parameters/states are estimated simultaneously, and the computational cost can also be reduced. Finally, experiments are conducted under different temperatures to verify the effectiveness of the proposed algorithm for various battery capacities.
24 pages, 6 figures
- Chongqing University China (People's Republic of)
- Chongqing University China (People's Republic of)
- Harbin University of Science and Technology China (People's Republic of)
- Harbin University of Science and Technology China (People's Republic of)
- University of Michigan–Flint United States
93B99, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control
93B99, FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).57 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
