Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della Ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system

Authors: Sara Bellocchi; Michele Manno; Michel Noussan; Matteo Giacomo Prina; Michela Vellini;

Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system

Abstract

Abstract The integration of significant shares of renewable energies poses remarkable issues related to the intermittent nature of these sources. Nonetheless, solutions in support of renewables integration exist and become particularly effective if conceived under a smart energy system perspective, to exploit potential synergies among different energy sectors. With this respect, shifting programmable consumption from fossil fuels to electricity represents one measure to exploit otherwise-curtailed renewable generation. In this study, the impact of electrification of both private transport and space heating is assessed for the Italian energy system with the help of EnergyPLAN software and quantified in terms of critical environmental and techno-economic indicators, evaluating to what extent increasing the electricity demand supports the development of renewables. Results confirm that both transport and heating electrification can lead to significant reductions in CO 2 emissions, around 25–30% if pursued independently. However, smart charge allows managing transport electricity demand more flexibly than heating demand, which makes the former more effective than the latter in fostering an increased renewable penetration, unless additional technologies are deployed to enhance flexibility in the heating sector. A techno-economic optimisation identifies possible optimal scenarios capable to reduce emissions by up to 47% with an increase in annualised costs of 34%.

Country
Italy
Keywords

Heat pump, Settore ING-IND/09 - SISTEMI PER L'ENERGIA E L'AMBIENTE, 690, Electrification, Settore ING-IND/08 - MACCHINE A FLUIDO, Smart energy system, Renewable energy source, Smart energy system; Renewable energy sources; Electrification; CO2 emissions; Electric vehicles; Heat pumps, Electric vehicle, CO2 emission

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 1%
Top 10%
Top 1%
Green