
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach

Abstract The integration of photovoltaic systems (PVSs) in future power systems grows into a more attractive choice. Thus, the studies related to PVSs operation have gained immense interest. Particularly, research in identifying PV cell model parameters remains an agile field because of the non-linearity of PV cell characteristics and its wide dependency on meteorological conditions of irradiation level and temperature. This paper proposes an Opposition-based Learning Modified Salp Swarm Algorithm (OLMSSA) for accurate identification of the two-diode model parameters of the electrical equivalent circuit of the PV cell/module. Six metaheuristic algorithms, including the recently released basic algorithm SSA, used with the benchmark test PV model of the double diode, and a practical PV module, are employed to assess the performance of OLMSSA. The experimental results and the in-depth comparative study clearly demonstrate that OLMSSA is highly competitive and even significantly better than the reported results of the majority of recently-developed parameter identification methods.
- University of Hail Saudi Arabia
- University of Tehran Iran (Islamic Republic of)
- An Giang University Viet Nam
- Duy Tan University Viet Nam
- National Engineering School of Tunis Tunisia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).118 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
