Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach

Authors: Arslan Habib; Huiling Chen; Ali Asghar Heidari; Ali Asghar Heidari; Mohamed Jemli; Mingjing Wang; Rabeh Abbassi; +4 Authors

Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach

Abstract

Abstract The integration of photovoltaic systems (PVSs) in future power systems grows into a more attractive choice. Thus, the studies related to PVSs operation have gained immense interest. Particularly, research in identifying PV cell model parameters remains an agile field because of the non-linearity of PV cell characteristics and its wide dependency on meteorological conditions of irradiation level and temperature. This paper proposes an Opposition-based Learning Modified Salp Swarm Algorithm (OLMSSA) for accurate identification of the two-diode model parameters of the electrical equivalent circuit of the PV cell/module. Six metaheuristic algorithms, including the recently released basic algorithm SSA, used with the benchmark test PV model of the double diode, and a practical PV module, are employed to assess the performance of OLMSSA. The experimental results and the in-depth comparative study clearly demonstrate that OLMSSA is highly competitive and even significantly better than the reported results of the majority of recently-developed parameter identification methods.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    118
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
118
Top 1%
Top 10%
Top 1%