Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2020
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
TECNALIA Publications
Article . 2020
License: CC BY NC ND
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermodynamic, economic and environmental assessment of energy systems including the use of gas from manure fermentation in the context of the Spanish potential

Authors: Javier Dufour; Javier Dufour; Mario Martín-Gamboa; Diego Iribarren; Anna Skorek-Osikowska; Anna Skorek-Osikowska; Diego García-Gusano;

Thermodynamic, economic and environmental assessment of energy systems including the use of gas from manure fermentation in the context of the Spanish potential

Abstract

Abstract One of the prospective technologies that can be used for energy generation in distributed systems is based on biogas production, usually involving fermentation of various types of biomass and waste. This article aims to bring novelty on the analysis of this type of systems, joining together thermodynamic, economic and environmental aspects for a cross-cutting evaluation of the proposed solutions. The analysis is made for Spain, for which such a solution is very promising due to availability of the feedstock. A detailed simulation model of the proposed system in two different cases was built in Aspen Plus software and Visual Basic for Applications. Case 1 involves production of biogas in manure fermentation process, its upgrading (cleaning and removal of CO2 from the gas) and injection to the grid. Case 2 assumes combustion of the biogas in gas engine to produce electricity and heat that can be used locally and/or sold to the grid. Thermodynamic assessment of these two cases was made to determine the most important parameters and evaluation indices. The results served as input values for the economic analysis and environmental evaluation through Life Cycle Assessment of the energy systems. The results show that the analysed technologies have potential to produce high-value products based on low-quality biomass. Economic evaluation determined the break-even price of biomethane (Case 1) and electricity (Case 2), which for the nominal assumptions reach the values of 16.77 €/GJ and 28.92 €/GJ, respectively. In terms of environmental assessment the system with the use of biogas in gas engine presents around three times better environmental profile than Case 1 in the two categories evaluated, i.e., carbon and energy footprint.

Country
Spain
Keywords

Biogas, Economic analysis, Manure fermentation, Life cycle assessment, Biogas upgrading, Thermodynamic analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 20
    download downloads 34
  • 20
    views
    34
    downloads
    Data sourceViewsDownloads
    ZENODO2034
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
11
Top 10%
Average
Top 10%
20
34
Green
hybrid