Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermodynamic cycle analysis of superadiabatic matrix-stabilized combustion for gas turbine engines

Authors: Clarence T. Chang; Matthias Ihme; Danyal Mohaddes;

Thermodynamic cycle analysis of superadiabatic matrix-stabilized combustion for gas turbine engines

Abstract

Abstract In aircraft propulsion as well as stationary power generation, gas turbine engines remain a key energy conversion technology due to their high thermal efficiencies and low emissions. However, as emission requirements become increasingly stringent, engine manufacturers have sought to design combustion systems that operate near the fuel-lean limit of flammability. In this study, superadiabatic matrix-stabilized combustion, also known as porous media combustion, is evaluated as an advanced combustion concept for extending the lean flammability limit to achieve improved efficiency and emissions. To this end, a Brayton cycle analysis is developed and key parameters of the porous matrix are identified for maximizing the extension of the lean flammability limit. It is shown that stabilization of combustion below the nominal lean flammability limit allows for the design of engines with significantly higher pressure ratios and lower dilution ratios without increasing turbine inlet temperatures, thus improving cycle thermal efficiency. Combustor flammability limits were shown to be extendable by up to 32% when employing matrix-stabilized combustion, resulting in thermal efficiency gains of up to 11% compared to a nominal design.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%