
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Aqueous nanofluids containing paraffin-filled MWCNTs for improving effective specific heat and extinction coefficient

This paper presents measurements of the effective specific heat and the extinction coefficient for aqueous nanofluids dispersed with paraffin-filled Multi-Walled Carbon NanoTubes (MWCNTs). The MWCNTs were filled with paraffin wax by capillary action. Centrifugal decanting was used to modify the traditional two-step method so as to produce a nanofluid dispersion that was more stable than that produced by the traditional method. The stability of each suspension was quantitatively evaluated with a laser scattering method over 7 days. A differential scanning calorimetry (DSC) and the three-slap method were used to measure the effective specific heat and the extinction coefficient of the nanofluids, respectively. The measured effective specific heat of the water-based paraffin-filled MWCNTs nanofluid, with a volume fraction of 1%, was up to 5.1% larger than that for the water-based MWCNT nanofluids without paraffin wax. The nanofluid extinction coefficient was shown to increase linearly with the volume fraction for data within the independent scattering regime, which occurred when the nanoparticle-distance/wavelength ratio (c/λ) was less than 2.
- National Institute of Standards and Technology United States
- National Institute of Standards and Technology, U.S. Department of Commerce United States
- Physical Measurement Laboratory United States
- National Institute of Standards and Technology (NIST), Gaithersburg MD, USA United States
- National Institute of Standards and Technology, Engineering Laboratory United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
