Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High-grade bio-oil produced from coconut shell: A comparative study of microwave reactor and core-shell catalyst

Authors: Liu Wu; Jie Liang; Xiangfei Xue; Yifei Sun; Xiaocui Wei; Haozhe Yu;

High-grade bio-oil produced from coconut shell: A comparative study of microwave reactor and core-shell catalyst

Abstract

Abstract The quality of bio-oil can be improved by conducting biomass pyrolysis either over a core-shell hierarchical zeolite catalyst or in a microwave reactor. However, there is a lack of comparative studies on the individual effects of each factor (e.g., catalysts, reactors) on bio-oil production. In this regard, the catalytic pyrolysis of coconut shell in a fixed-bed reactor and in a microwave reactor using the conventional ZSM-5 and core-shell hierarchical ZSM-5@SBA-15 catalysts was evaluated. With an emphasize on the production of hydrocarbons and phenols, the comparative effect of the core-shell catalyst and microwave reactor was demonstrated. The core-shell catalyst had the dual effect of regulating the bio-oil yield and composition. Compared to conventional ZSM-5 (25) with a SiO2/Al2O3 ratio of 25, the core-shell ZSM-5 (25)@SBA-15 not only increased the bio-oil yield by at least 40%, but also approximately doubled the production of hydrocarbons, irrespective of the reactor type. In contrast, the microwave reactor played a greater role in regulating the bio-oil composition. Irrespective of the catalyst used, the fixed-bed reactor tended to generate phenolic-rich bio-oil, while the microwave reactor sharply reduced the phenol selectivity by at least doubling that for aromatics.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%