
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series

Abstract Forecasting the future price of crude oil, which has an important role in the global economy, is considered as a hot matter for both investment companies and governments. However, forecasting the price of crude oil with high precision is indeed a challenging task because of the nonlinear dynamics of the crude oil time series, including chaotic behavior and inherent fractality. In this study, a new forecasting model based on support vector regression (SVR) with a wrapper-based feature selection approach using multi-objective optimization technique is developed to deal with this challenge. In our model, features based on technical indicators such as simple moving average (SMA), exponential moving average (EMA), and Kaufman’s adaptive moving average (KAMA) are utilized. SMA, EMA, and KAMA indicators are obtained from Brent crude oil closing prices under different parameters. The features based on SMA and EMA indicators are formed by changing the period values between 3 and 10. The features based on the KAMA indicator are obtained by changing the efficiency ratio (ER) period value, which is considered as fractality efficiency, between 3 and 10. The features are selected by the wrapper-based approach consisting of multi-objective particle swarm optimization (MOPSO) and radial basis function based SVR (RBFSVR) techniques considering both the mean absolute percentage error (MAPE) and Theil’s U values. The obtained empirical results show that the proposed forecasting model can capture the nonlinear properties of crude oil time series, and that better forecasting performance can be obtained in terms of precision and volatility than the other current forecasting models.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).377 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
