
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Numerical simulation of the heterogeneous combustion of dust clouds containing polydisperse porous iron particles

In this study, heterogeneous combustion of dust clouds containing polydisperse porous iron particles was numerically investigated. The main aim was to develop a discrete three-dimensional model to quantify the effects of particle size, porosity, cloud concentration, and polydispersity on flame propagation speed. The developed numerical model was validated against experimental data to show its promising accuracy. The modeling results show that increasing the cloud concentration increases flame propagation speed significantly, regardless of the particle size distribution, by about 3 times. Increasing the particle porosity can increase flame propagation remarkably, i.e., for particle sizes in the range of 1−3, 1−10, and 1−30 um, flame propagation speed was elevated by up to 24.2%, 36.7%, and 22.6%, respectively, when particle porosity increases from 0 to 0.1. However, increasing the particle size itself was found to decrease flame propagation speed as larger particles tend to be more difficult to ignite. For example, when the particle size distribution changes from 1−3 to 1−30 um, flame propagation speed decreases by a factor of 3.6. These findings serve to improve our understanding of heterogeneous combustion of dust clouds containing polydisperse porous iron particles.
- Queen Mary University of London United Kingdom
- Iran University of Science and Technology Iran (Islamic Republic of)
- Hong Kong Polytechnic University China (People's Republic of)
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
Iron powder, Flame propagation, Heterogeneous combustion, Numerical simulation, Polydispersity, Porosity, 620
Iron powder, Flame propagation, Heterogeneous combustion, Numerical simulation, Polydispersity, Porosity, 620
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
