Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

How exothermic characteristics of rice straw during anaerobic digestion affects net energy production

Authors: Zili Mei; Yihong Ge; Tao Luo; Yanran Fu; Jian Xue; Benyamin Khoshnevisan; Junting Pan; +1 Authors

How exothermic characteristics of rice straw during anaerobic digestion affects net energy production

Abstract

Abstract The self-heating of lignocellulosic biomass, when degraded under anaerobic conditions, has been reportedly observed. Such a phenomenon would cause substrate to show exothermic characteristics which are in contrast to the current thermodynamic or microbiological knowledge. Rice straw (RS), when undergone anaerobic digestion, is prone to self-heating which can increase the reactor temperature according to heat-releasing characteristics, thus improve the net energy production. In the present study, the relationship of biogas production and self-heating release as well as the synergistic effects of two energy production pathways was investigated. Moreover, the optimal process for maximizing the biogas production under self-heating phenomenon was scrutinized. Compared to control assays, a 0.48 °C increase in average temperature was noticed among experimental trials due to RS self-heating phenomenon. The results showed that the self-heating was even improved simultaneous with increased methane production rate. Hydrolysis rate and total solid content were found to be possible promising options to control the self-heating release.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average