Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multiobjective optimization of underground power cable systems

Authors: Paweł Ocłon; Monika Rerak; Ravipudi Venkata Rao; Piotr Cisek; Andrea Vallati; Dariusz Jakubek; Bartosz Rozegnał;

Multiobjective optimization of underground power cable systems

Abstract

Abstract This paper presents a modified Jaya algorithm (MJaya) for optimizing the material costs and electric-thermal performance of an Underground Power Cable System (UPCS). Three power cables arranged in flat formation are considered. Three XLPE high voltage cables are situated in the thermal backfill layer for ensuring the optimal thermal performance of the cable system. The cable backfill dimensions, cable backfill material, and cable conductor area are selected as design variables in the optimization problem. In the study, the Finite Element Method model is validated experimentally. The Particle Swarm Optimization (PSO), Jaya, and MJaya algorithms are used for multiobjective optimization in order to design a cable system in such a way to minimize the cable backfill costs and maximize the allowable electric current flowing through the cables. For the case study, calculations performed using the Jaya algorithm indicated 1.7 mln Euro cable system costs while cable ampacity is equal to I = 1460 A. The calculations are performed for the objective function values equal to w1 = 0.5 and w2 = 0.5. Such an optimization parameters set allow obtaining low costs of UPCS alongside with reasonable cable line ampacity. What is more, the results of the optimization obtained by Jaya, MJaya, and PSO algorithms are compared. Therefore, Coverage and Hypervolume metrics are incorporated. It is concluded that both the Jaya and MJaya algorithms performed better when compared to the PSO algorithm.

Country
Italy
Keywords

high voltage; underground power cable system; thermal backfill; Jaya algorithm; finite element method

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Green
bronze