
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermodynamic optimization of the superheater during switching the load transient processes

Abstract The boiler superheater undergoes load cycling transients, once the thermal power plant participates in peak shaving. Thermodynamic optimization of a superheater is carried out by optimizing the flowrate/temperature matches between the hot and cold fluids during switching the load rate from 0.75 to 1.00. On the basis of a dynamic model of the superheater, the transient thermal performance is presented. Furthermore, the exergy delivery efficiency of the superheater was analyzed. The superheater outlet temperatures of hot fluid, metal wall, and cold fluid are highly affected when regulating work fluid inlet flowrates/temperatures. During switching the load transient, when increasing the hot fluid flowrate amplitude and variation rate by 50%, the average exergy efficiency (ηE,avg) of the superheater can improve by 1.04% and 0.13%, respectively. When increasing the cold fluid inlet temperature by 5%, ηE,avg can improve by 1.16%. When increasing the hot fluid inlet temperature by 5%, ηE,avg decreases by 0.74%. The exergy efficiency of the superheater is more sensitive to regulating temperature match than the flowrate match during switching the load transient process.
- Xi’an Jiaotong-Liverpool University China (People's Republic of)
- Xi'an Jiaotong University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
