Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Article . 2021
Data sources: ZENODO
ZENODO
Article . 2021
Data sources: ZENODO
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan

Authors: COSIMO MAGAZZINO; Marco Mele; Nicolas Schneider;

A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan

Abstract

Abstract While Germany and Japan are going through major energy reforms, natural gas consumption is taking a growing share in their energy supply. This paper adopts a Machine Learning approach to assess the causal link between natural gas consumption and economic growth for both economies. A Causal Direction from Dependency (D2C) algorithm with the interconnection of the sub-class is employed using yearly data from 1970 to 2018. The interconnections of the sub-classes are found for both economies, indicating evidence of causalities operating in both directions. In addition, the propagation over the seven eras is linear and homogeneously continue for Japan, while this effect meets a stabilization phase in the fifth era for Germany. The empirical findings claim strong support for the existence of a bidirectional causality between these variables in Germany and Japan, which is in line with the “feedback hypothesis”. Although the strength of this bidirectional relationship is clear for both economies, its time-propagation is expected to be longer for Japan. Accordingly, this study claims that the gas supply should be further strengthened to progressively replace the most polluting fuels (oil and coal) and ensure a feasible transition towards a renewable path.

Country
Italy
Keywords

D2C algorithm, Natural gas consumption, GDP, Machine Learning, Natural gas consumption; GDP; Machine learning; D2C algorithm; Germany; Japan, Japan, Germany

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
  • 3
    views
    Data sourceViewsDownloads
    ZENODO30
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
61
Top 1%
Top 10%
Top 1%
3