Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CORE
Article . 2021
License: rioxx Under Embargo All Rights Reserved
Data sources: CORE
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CORE (RIOXX-UK Aggregator)
Article . 2021
License: rioxx Under Embargo All Rights Reserved
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance prediction and evaluation on the first balanced energy networks (BEN) part I: BEN and building internal factors

Authors: A. Gillich; Daisy Lu; Daisy Lu; Andy Ford; Esmail M. Saber; Ren Kang; Mark Geoffrey Hewitt; +3 Authors

Performance prediction and evaluation on the first balanced energy networks (BEN) part I: BEN and building internal factors

Abstract

© 2021 Elsevier Ltd Approximately half of all energy consumed is used for generating heat and hot water in the UK, meanwhile, space heating and hot water consist of about 21% of greenhouse gas emissions. One pathway of decarbonizing heat is electrification of heat, the requirement of electricity is then met through smart grid and demand side response management. A new method for electrifying heat through a balanced energy network (BEN) system, which is situated in central campus of London South Bank University, has been presented. The validations of BEN model are performed against historic measurement data and manufacturer performance data. BEN system performance is then predicted and evaluated through investigating the effects of BEN and building internal factors including system operation mode, thermal storage, indoor set-point temperature, and COP of heat pump. Several key results were drawn as follows: (1) Carbon emissions from building energy consumption mainly depend on operation mode and thermal storage capacity of BEN system, actual heat demand in buildings and carbon emission factor as a function of time; (2) Energy consumption and costs and its carbon emissions will nonlinearly increase with the increasing of indoor set-point temperature; (3) In January (the coldest month of the year), the heating consumption for operating BEN system will be decreased by 77.9%/72.9% compared with historic monitoring data of 2014/2015; (4) For BEN system, the usage, costs and carbon emissions of electricity supplying to heat pump is an decreasing function of COP.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green