
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Performance prediction and evaluation on the first balanced energy networks (BEN) part I: BEN and building internal factors

© 2021 Elsevier Ltd Approximately half of all energy consumed is used for generating heat and hot water in the UK, meanwhile, space heating and hot water consist of about 21% of greenhouse gas emissions. One pathway of decarbonizing heat is electrification of heat, the requirement of electricity is then met through smart grid and demand side response management. A new method for electrifying heat through a balanced energy network (BEN) system, which is situated in central campus of London South Bank University, has been presented. The validations of BEN model are performed against historic measurement data and manufacturer performance data. BEN system performance is then predicted and evaluated through investigating the effects of BEN and building internal factors including system operation mode, thermal storage, indoor set-point temperature, and COP of heat pump. Several key results were drawn as follows: (1) Carbon emissions from building energy consumption mainly depend on operation mode and thermal storage capacity of BEN system, actual heat demand in buildings and carbon emission factor as a function of time; (2) Energy consumption and costs and its carbon emissions will nonlinearly increase with the increasing of indoor set-point temperature; (3) In January (the coldest month of the year), the heating consumption for operating BEN system will be decreased by 77.9%/72.9% compared with historic monitoring data of 2014/2015; (4) For BEN system, the usage, costs and carbon emissions of electricity supplying to heat pump is an decreasing function of COP.
- University of California, Berkeley United States
- China Agricultural University China (People's Republic of)
- London South Bank University United Kingdom
- London South Bank University United Kingdom
- China Agricultural University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
