Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Blow wind blow: Capital deployment in variable energy systems

Authors: Sgouris Sgouridis; Charles A. Kang; Michael Carbajales-Dale; Adam R. Brandt; C. J. Barnhart; Holger Teichgraeber;

Blow wind blow: Capital deployment in variable energy systems

Abstract

Abstract Future energy systems will inevitably rely much more on variable renewable energy. This transition has implications for capital equipment in the energy gathering, processing, and end-use sectors. We define a “flexible energy strategy” (FES) as an energy capital investment and associated operating strategy that can increase usage of variable renewable energy. The literature on FES options is vast and many options have been explored, such as electrochemical storage, demand management, or flexible manufacturing. However, FESs have been difficult to compare to date because of large variation in the details of technology characteristics and possible operating strategies. We develop a purposely simplified framework for consistent inter-comparison of FESs that uses the levelized cost of peak energy (LCPE) – energy provided at times of high electricity prices. We show that various FESs which differ in many details can be represented at a more abstract level with a small number of common terms (e.g., $ per W). We develop analytical solutions for LCPE for four broad classes of FESs. We evaluate these equations for four template variability cycles with empirical FES data. Our simple framework recreates intuitive and oft-cited results from the literature (i.e., challenges of seasonal-scale variability) and points to concrete targets for energy storage technologies.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%