Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhanced gas production from marine hydrate reservoirs by hydraulic fracturing assisted with sealing burdens

Authors: Shuxia Li; Didi Wu; Yongmao Hao; Xiaopu Wang;

Enhanced gas production from marine hydrate reservoirs by hydraulic fracturing assisted with sealing burdens

Abstract

Abstract Gas productivity of current hydrate reservoir tests is too lower to meet the demand of the commercial level. The main reasons include the low permeability of hydrate-bearing layer (HBL) and the existence of permeable burdens in natural gas hydrate reservoir, which act as the major barriers for pressure drop propagation during depressurization. However, previous studies are focusing on either permeable burdens or hydraulic fracturing. This paper proposed a novel modified method of depressurization by hydraulic fracturing assisted with sealing burdens. The effects of the radial length and permeability of fractured domain, and the sealing location and length of overburden and underburden layers on hydrate dissociation and gas production were analyzed through numerical simulation. The results indicated:1) The larger permeability and longer radial length of the fracturing domain would promote propagation of pressure drop significantly, and the percentage of gas hydrate dissociation would be increased from 3.99% to 29.86% by hydraulic fracturing. 2) The sealing length of burdens should be larger than the fracturing radial length. The cumulative gas production could be enhanced by 93.25% while the cumulative water production could be decreased by 62.99% compared with no sealing burdens. Base on the novel method, the goals of enhancing gas production and reducing water production would be achieved simultaneously, providing important implications for hydrate commercial exploitation in the future.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 1%