Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization

Authors: Mahmoudan A.; Samadof P.; Hosseinzadeh S.; Astiaso Garcia D.;

A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization

Abstract

Abstract A novel integrated energy system based on a geothermal heat source and a liquefied natural gas heat sink is proposed in this study for providing heating, cooling, electricity power, and drinking water simultaneously. The arrangement is a cascade incorporating a flash-binary geothermal system, a regenerative organic Rankine cycle, a simple organic Rankine cycle, a vapor compression refrigeration cycle, a regasification unit, and a reverse osmosis desalination system. Energy, exergy, and exergoeconomic methods are employed to analyze the suggested system. A parametric study based on decision variables is carried out to better assess the system performance. Four different multi-objective optimization problems are also carried out. At the most excellent trade-off solution specified by the TOPSIS method, the system attains 29.15% exergy efficiency and 1.512 $/GJ total product cost per exergy unit. The main output products are consequently calculated to be 101.07 kg/s cooling water, 570.44 kW net output power, and 81.57 kg/s potable water.

Country
Italy
Keywords

desalination; exergoeconomic analysis; geothermal-driven systems; liquefied natural gas heat sink; multi-generation systems; multi-objective optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 1%
Top 10%
Top 1%